全球关注:[python] Python类型提示总结

2023-05-10 12:31:32 来源:博客园 分享到:

Python3.5 版本引入了类型提示(Type Hints),它允许开发者在代码中显式地声明变量、函数、方法等的类型信息。这种类型声明不会影响 Python 解释器的运行,但可以让 IDE 和静态分析工具更好地理解代码,同时提高代码的可读性和可维护性。然而,由于 Python 支持动态类型,类型提示并不能完全确保代码的正确性。本文仅介绍 Python 类型提示的初步使用。如果需要更详细的使用说明,请参考以下文章:typing、Python 类型提示简介和Type Hints 入门教程。


【资料图】

类型提示的语法格式为:

对于变量:{变量名}:{类型名} =对于函数参数:{参数名}:{类型名} =对于函数返回值:->目录1 类型提升2 类型声明2.1 基本类型2.2 嵌套类型2.3 自定义类型2.4 复合类型2.4.1 Union和Optional2.4.2 Generator和Iterator2.4.3 Callable2.4.4 Any和NoReturn2.4.5 其他2.5 类型提示的别名3 参考1 类型提升

类型提示的引入主要有以下几个方面的用途:

1 提高代码可读性

类型提示可以帮助其他开发人员更好地理解代码,特别是在处理大型代码库时。通过清晰地指定变量、函数参数和返回值的数据类型,开发人员可以更快地理解代码的含义和用途,从而更容易维护和修改代码。

如下所示。我们有一个名为 add 的函数,用于将两个数字相加并返回结果。以下是该函数的原始代码:

def add(a, b):    return a + b

我们发现,该函数没有任何类型提示,因此在调用该函数时,我们必须自己去了解和检查每个参数的类型。这样会导致代码的可读性和可维护性变差,特别是在代码规模较大、涉及多个文件的情况下。为了改善这种情况,我们可以使用类型提示来明确指定每个参数的类型。以下是添加类型提示后的 add函数的代码:

def add(a: int, b: int) -> int:    return a + b

现在,我们可以清楚地看到函数 add 的参数和返回值都是整数类型。这使得代码更易于理解,也提高了代码的可靠性。

2 检测类型错误

Python 是一种动态语言,因此变量和函数参数的类型可以在运行时进行更改。但是,这也意味着开发人员容易在代码中引入类型错误。通过使用类型提示,开发人员可以在编译时检测到这些类型错误,并更早地发现和修复它们,从而减少代码错误和调试时间。

mypy是一个用于检查Python类型的静态类型检查器。它可以检测类型注释中的错误以及其他类型的错误。mypy使用说明可以参考:mypy简易教程。mypy需要首先输入以下命令安装:

pip install mypy

然后,在代码中标注变量、函数参数和返回值的类型。运行以下命令:

mypy your_script.py

在上面的示例中,your_script.py是要检查的Python脚本。运行mypy工具后,它将检查Python脚本中的类型错误,并输出错误信息。

3 提供自动补全和文档

许多集成开发环境(IDE)和编辑器都可以使用类型提示来提供自动补全和代码文档。这可以帮助开发人员更快地编写代码,并提供关于函数参数和返回值的信息,以便更好地理解代码。要使用Python类型提示提供自动补全和文档,需要使用一个支持该功能的Python编辑器。比如一些流行的Python编辑器包括vscode、PyCharm和Sublime Text等。

以vscode为例,考虑一个整数相加函数,将结果保存在变量c中。如果加上类型提示,vscode插件将推断变量c的类型为 int,并提供代码补全和代码提示等功能。

此外,还可以使用vscode的autoDocstring生成带有类型提示的文档和注释。

autoDocstring注释代码使用方法如下所示:

按照以上方法,对于有无类型提示的注释结果如下:

def add(a, b):    """_summary_    Args:        a (_type_): _description_        b (_type_): _description_    Returns:        _type_: _description_    """    c = a + b    return cdef add(a: int, b: int) -> int:    """_summary_    Args:        a (int): _description_        b (int): _description_    Returns:        int: _description_    """    c = a + b    return c
2 类型声明2.1 基本类型

对于Python的内置基本类型 int、float、str 和 byte等,可以直接使用类型本身进行类型提示。如下所示:

# 直接定义age: int = 1# 声明后定义num: floatnum = 2.0def greet(name: str) -> str:    return f"Hello, {name}!"def is_even(x: int) -> bool:    return x % 2 == 0def encode_data(data: str) -> bytes:    return data.encode("utf-8")
2.2 嵌套类型

对于容器数据结构,例如 list、tuple、dict 等,也可以直接使用类型本身进行类型提示。如下所示:

items: list = [1, 4.0, "3"]info: dict = {"name":"john", "age":24}

在Python的容器数据结构中,每个元素都具有其自己的类型。虽然这种方法提供了灵活性,但是内部元素的类型无法受到限制,因此内部元素可以是任何类型(Any)。可以通过Python的typing标准库来声明这些类型及其元素类型。

from typing import List, Tuple, Dict, Set# 指定my_list变量是一个整数列表my_list: List[int] = [1, 2, 3, 4]# 指定my_tuple变量应该是一个按顺序包含整数、字符串和布尔值的元组my_tuple: Tuple[int, str, bool] = (1, "hello", True)# 指定了my_dict变量是一个所有键为str类型,所有值为int类型的字典my_dict: Dict[str, int] = {"apple": 1, "banana": 2, "orange": 3}# 指定了my_set变量应该是一个浮点数集合my_set: Set[float] = {1.0, 2.0, 3.0}
2.3 自定义类型

Python也支持对自定义类进行类型提示。下面是一个自定义类的类型提示示例:

class Person:    def __init__(self, name: str, age: int):        self.name = name        self.age = agedef say_hello(person: Person) -> str:    return f"Hello, {person.name}!"

在上面的代码中,我们定义了一个 Person 类,它有两个属性:name 和 age。在初始函数中,我们使用类型提示指定了这两个属性的类型。接下来,我们定义了一个 say_hello 函数,这个函数的参数是一个 Person 类型的对象,并且返回值是一个字符串。

对于numpy和pandas这种第三方库,也可以通过同样的方法进行类型提示:

import numpy as npimport pandas as pdimport cv2# numpydef add_arrays(a: np.ndarray, b: np.ndarray) -> np.ndarray:    return np.add(a, b)# pandasdef filter_dataframe(df: pd.DataFrame, column: str, value: float) -> pd.DataFrame:    return df[df[column] > value]# opencv,opencv图像本身就是一个numpy数组结构def resize_image(img: np.ndarray, height: int, width: int) -> np.ndarray:    return cv2.resize(img, (width, height))
2.4 复合类型2.4.1 Union和Optional

Python的typing库也提供了Union类型用于表示多种类型中的一种,Optional类型用于表示可选类型。它们可以结合使用,以便更好地表示变量的类型。

例如,如果一个变量可以是整数或字符串类型,那么可以这样定义它的类型:

from typing import Uniondef func(x: Union[int, str]) -> None:    pass

上面的代码中,x的类型为Union[int, str],表示x可以是整数或字符串类型。

如果一个变量可以是整数类型或None类型,那么可以这样定义它的类型:

from typing import Optionaldef func(x: Optional[int] = None) -> None:    pass

Union和Optional类型可以结合使用。例如,如果一个变量可以是整数类型、字符串类型或None类型,那么可以这样定义它的类型:

from typing import Optional, Uniondef func(x: Optional[Union[int, str]]) -> None:    pass

上面的代码中,x的类型为Optional[Union[int, str]],表示x可以是整数类型、字符串类型或None类型。

此外,在Python中,Union[X, Y] 表示变量的类型可以是 X 或 Y。因此,Optional[X] 实际上是 Union[X, None] 的简写形式。这种语法的好处是它可以使代码更简洁,因为我们只需要写一个类型而不是两个。

from typing import Optional, Uniondef greet(name: Optional[str]) -> str:    if name is None:        return "Hello, stranger!"    else:        return f"Hello, {name}!"def greet2(name: Union[str, None]) -> str:    if name is None:        return "Hello, stranger!"    else:        return f"Hello, {name}!"

在上面代码中,greet和greets函数是等价的。在第一个函数中,我们使用了 Optional[str] 来表示 name 可以是一个字符串或者是 None。在第二个函数中,我们使用了 Union[str, None] 来达到相同的效果。

2.4.2 Generator和Iterator

在Python中,Generator和Iterator是非常常见的数据类型。Generator是一种函数,可以通过yield语句生成一个迭代器,而Iterator是一种对象,可以用于迭代元素序列。为了提高代码的可读性和可维护性,我们可以使用类型提示来指定Generator和Iterator的类型。

Generator类型提示使用Generator[ReturnType, SendType, ReturnType]语法,其中ReturnType指定返回值类型,SendType指定发送值类型,ReturnType指定生成器的类型。例如,下面是一个简单的Generator类型提示示例:

from typing import Generatordef even_numbers(n: int) -> Generator[int, None, None]:    for i in range(n):        if i % 2 == 0:            yield i

上面的代码中,even_numbers是一个Generator函数,返回类型是Generator[int, None, None],该函数生成一个整数序列,其中每个偶数都是通过yield语句生成的。

Iterator类型提示使用Iterator[ElementType]语法,其中ElementType指定迭代器元素类型。例如,下面是一个简单的Iterator类型提示示例:

from typing import Iteratorclass MyIterator:    def __init__(self):        self.current: int = 0        self.max: int = 5    def __iter__(self) -> Iterator[int]:        return self    def __next__(self) -> int:        if self.current >= self.max:            raise StopIteration        else:            self.current += 1            return self.current

在上面的代码中,我们对MyIterator类进行了注释。使用了typing模块中的Iterator类来注释__iter__()方法的返回值类型。同时,我们对current和max属性也进行了注释,指定了它们的类型为int。在__next__()方法中,我们指定了返回值类型为int。

2.4.3 Callable

Callable类型提示用于表示一个可调用对象,例如函数、类或对象等。从形式上来看,Callable类型提示接受两个或三个类型提示参数:第一个参数表示函数的参数类型,第二个参数表示函数的返回类型。下面是一个Callable类型提示的例子:

from typing import Callabledef apply(func: Callable[[int, int], int], a: int, b: int) -> int:    return func(a, b)def add(a: int, b: int) -> int:    return a + bresult = apply(add, 3, 4)print(result) # 输出7

在上面的例子中,apply函数接受一个名为func的参数,该参数是一个Callable类型,它指定了函数的两个整数参数和一个整数返回值。add函数满足这个条件,因此可以传递给apply函数,它会返回add(3, 4)的结果7。

2.4.4 Any和NoReturn

Any类型表示一个任意类型,它可以用于函数参数、函数返回值和变量等。使用Any类型时,我们可以省略类型注释,使变量类型更加灵活。下面是一个使用Any类型的例子:

from typing import Anydef print_value(value: Any) -> None:    print(value)print_value("Hello World")  # 输出 "Hello World"print_value(123)           # 输出 123

在上面的例子中,我们定义了一个print_value函数,它接受一个任意类型的参数value,并将其打印出来。我们可以看到,我们可以将任何类型的值传递给print_value函数,包括字符串和整数。这使得我们的代码更加灵活。

NoReturn类型表示函数不会返回任何值。这个类型通常用于标识那些没有返回值的函数。下面是一个使用NoReturn类型的例子:

from typing import NoReturndef print_message(message: str) -> NoReturn:    print(message)    raise Exception("Error occurred")print_message("Hello World")  # 输出 "Hello World",然后抛出异常

在上面的例子中,我们定义了一个print_message函数,它接受一个字符串类型的参数message,并将其打印出来。然后,我们手动抛出了一个异常,这意味着函数不会返回任何值。我们可以使用NoReturn类型来明确地表示这一点。

2.4.5 其他

Python还支持更高级的类型提示。例如,可以使用Sequence来指定一个列表,使用TypedDict来指定一个带有特定键和值类型的字典。此外,Python还支持Literal类型提示,可以限制变量只能取特定的常量值。最近,Python3.8版本还增加了Protocol类型提示,允许指定类需要实现哪些方法和属性。这些类型提示用的不多,但是如果需要更精细的类型控制,可以参考官方文档:typing。

2.5 类型提示的别名

在类型提示中使用了过于复杂的类型,可以考虑将其定义为一个类型别名,然后在函数参数、返回值等处使用该类型别名。例如,如果你需要传递一个包含多个字段的字典作为函数参数,你可以使用Dict[str, Union[int, str, List[int]]]来表示该字典的类型。但是,这个类型过于复杂,不易于理解。你可以将其定义为一个类型别名,如下所示:

from typing import Dict, Union, ListMyDict = Dict[str, Union[int, str, List[int]]]def my_function(my_dict: MyDict) -> int:    # Function body    return 1

这样,你就可以在函数参数、返回值等处使用MyDict这个类型别名,使代码更加易读、易懂。

3 参考typingPython 类型提示简介Type Hints 入门教程mypymypy简易教程autoDocstring
标签:

全球关注:[python] Python类型提示总结

来源:博客园 2023-05-10 12:31:32

天天实时:什么是诰命夫人?穿戴与常人不同,享有寻常人不能有的特权

来源:百科 2023-05-10 12:05:20

怀旧空吟闻笛赋到乡翻似烂柯人_怀旧空吟闻笛赋

来源:互联网 2023-05-10 11:51:10

当前热门:“江南清丽地”崛起“活力澎湃城” 浙江湖州以实干争先推进中国式现代化建设

来源:新华每日电讯 2023-05-10 11:12:46

科大智能参设新能源发展公司 经营范围含电池销售

来源:云财经 2023-05-10 10:48:04

世界观速讯丨中泰国际:重申新天绿色能源买入评级 目标价下调至4.88港元

来源:清一色财经 2023-05-10 10:30:08

世界快消息!华安证券给予润泽科技买入评级 业绩符合预期 AI有望驱动机柜总量和功率持续增长

来源:每日经济新闻 2023-05-10 09:51:54

怎么查高考二本录取结果样询批情况安徽何时情况

来源:壹壹高考网 2023-05-10 09:30:10

“吴法吴天”!进球最多失球最少,上海申花独占中超榜首

来源:澎湃新闻 2023-05-10 09:02:50

4名肇事者被抓!哈尔滨、广州高楼装修拆承重墙现场调查:有居民原本75万元卖房当救命钱,“现在怎么卖得出去?”-环球热点

来源:每日经济新闻 2023-05-10 08:26:42

世界消息!两极格局形成的标志是什么_两极格局形成的标志

来源:互联网 2023-05-10 07:56:46

全球新动态:宣恩县气象台发布大雾黄色预警【III级/较重】【2023-05-10】

来源:九派新闻 2023-05-10 07:02:52

啦啦啦啦是什么歌男的唱的_啦啦啦啦是什么歌-即时焦点

来源:互联网 2023-05-10 06:12:50

云南省保山市2023-05-10 03:41发布强对流黄色预警

来源:互联网 2023-05-10 05:07:27

开战!欧冠4强检阅:皇马、曼城、米兰双雄!

来源:新垣体育 2023-05-10 03:10:54

sds中的十六项信息是哪些?请_sds中的十六项信息是哪些

来源:互联网 2023-05-10 01:02:36

家常小炒6000例做法窍门_家常小炒6000例做法

来源:互联网 2023-05-09 22:38:15

毕业祝福语4字_毕业四字祝福语简介介绍_全球速看

来源:互联网 2023-05-09 22:06:29

025是哪里的区号_0950是哪里的区号|天天要闻

来源:互联网 2023-05-09 20:58:09

世界看点:地球生命如何诞生?科学家又有新发现

来源:光明网 2023-05-09 20:32:20

头条焦点:愿君多采撷此物最相思是表达的什么情感_愿君多采撷此物最相思

来源:互联网 2023-05-09 20:08:00

换个地方买房,就用不了公积金?

来源:正观新闻 2023-05-09 19:07:46

中国好邻居!退伍军人徒手爬上三楼翻窗灭火-当前速读

来源:映象网 2023-05-09 18:41:31

全球热点评!00后男生取名江胡传奇:妈妈姓胡 爸爸喜欢玩《传奇》

来源:快科技 2023-05-09 18:07:28

地区性银行股剧震!大量卖空行为或遭调查?-环球速递

来源:上海证券报 2023-05-09 17:38:16

三亚一山湖房价未来会不会暴涨?2023是否值得投资?_全球实时

来源:海南二手房地产网 2023-05-09 17:13:58

视讯!咸安高桥镇:志愿红化身“反诈宣讲先锋” 守护群众“钱袋子”

来源:云上咸安 2023-05-09 16:46:39

中国电子信息产业发展研究院院长张立:2022年我国超高清视频产业规模超过3万亿元

来源:上海证券报 2023-05-09 16:09:16

统计局:城镇私营人员年平均工资同比增长3.7% 房地产行业工资下降 全球新资讯

来源:观点地产网 2023-05-09 16:02:40

【环球聚看点】2023-2024学年贵州省中小学(幼儿园)校历时间出炉

来源:贵州省教育厅 2023-05-09 15:00:39

Copyright   2015-2022 海峡知识产权网 版权所有  备案号:皖ICP备2022009963号-10   联系邮箱:396 029 142 @qq.com